organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3-(3-Chloro-4-methylphenyl)-2-(4-fluorophenyl)thiazolidin-4-one

Xiao-Jun Sun* and Jian-Feng Zhou

Jiangsu Key Laboratory of Chemistry of Low-Dimensional Materials, Department of Chemistry, Huaiyin Teachers' College, Huaian 223300, People's Republic of China Correspondence e-mail: sunxiaojun100@126.com.cn

Received 27 October 2007; accepted 8 November 2007

Key indicators: single-crystal X-ray study; T = 113 K; mean σ (C–C) = 0.003 Å; disorder in main residue; R factor = 0.048; wR factor = 0.125; data-to-parameter ratio = 14.4.

The title compound, $C_{16}H_{13}$ CIFNOS, possesses potent antibacterial activity. The overall molecular conformation is described by the dihedral angles of 43.0 (1)° between the 3chloro-4-methylbenzene and thiazolidinone rings, and 88.8 (5)° between the thiazolidinone and 4-fluorobenzene rings. The 3-chloro-4-methylbenzene ring is disordered over two positions with occupancy factors approximately 3:1.

Related literature

For related literature, see: Tumul Srivastava et al. (2002).

Experimental

Crystal data

C ₁₆ H ₁₃ ClFNOS	
$M_r = 321.78$	
Orthorhombic, Pbca	
u = 12.265 (3) Å	
o = 12.994 (3) Å	
: = 18.192 (4) Å	

Data collection

Rigaku Saturn diffractometer
Absorption correction: multi-scan
(Jacobson, 1998)
$T_{\min} = 0.937, T_{\max} = 0.960$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.048$ $wR(F^2) = 0.125$ S = 1.123445 reflections 240 parameters $V = 2899.3 (10) Å^{3}$ Z = 8 Mo K\alpha radiation $\mu = 0.42 \text{ mm}^{-1}$ T = 113 (2) K 0.16 \times 0.14 \times 0.10 mm

34208 measured reflections 3445 independent reflections 2796 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.056$

8 restraints H-atom parameters constrained $\Delta \rho_{max} = 0.38 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{min} = -0.76 \text{ e} \text{ Å}^{-3}$

Data collection: *CrystalClear* (Rigaku/MSC, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1990); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXL97*; software used to prepare material for publication: *CrystalStructure* (Rigaku/MSC, 2005).

This work was supported by Jiangsu Key Laboratory of Chemistry of Low-Dimensional Materials.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2144).

References

Jacobson, R. (1998). Private communication to the Rigaku Corporation. Rigaku/MSC (2005). CrystalClear (Version 1.36) and CrystalStructure (Version 3.7.0). Rigaku/MSC, Tokyo, Japan. Sheldrick, G. M. (1990). Acta Cryst. A46, 467–473.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Tumul Srivastava, Haq, W. & Katti, S. B. (2002). Tetrahedron, 58, 7619–7624.

Acta Cryst. (2008). E64, o214 [doi:10.1107/S1600536807057133]

3-(3-Chloro-4-methylphenyl)-2-(4-fluorophenyl)thiazolidin-4-one

X.-J. Sun and J.-F. Zhou

Comment

In recent years, 4-thiazolidinones are the most extensively investigated class of compounds, which exhibits various biological activities, such as anticancer, antitubercular, antibacterial and herbicidal activities. In view of these properties and in a continuation of our interest in the chemistry of 4-thiazolidinones, we have attempted to synthesize a series of 4-thiazolidinone derivatives, some of which have comparatively high antibacterial activity. The crystal structure determination of the title compound, (I), was undertaken to investigate the relationship between structure and antibacterial activity (Fig. 1). The molecular conformation is described by the dihedral angle between 3-chloro-4-methylbenzene ring and thiazolidinone ring of $43.0 (1)^{\circ}$ and the dihedral angle between thiazolidinone ring and 4-fluorobenzene ring of $88.8 (5)^{\circ}$.

Experimental

Compound (I) was synthesized according to the procedure of Tumul Srivastava *et al.* (2002). A crystal of (I) suitable for X-ray analysis was grown from an ethanol solution by slow evaporation at room temperature.

Refinement

The 3-chloro-4-methylbenzene ring shows positional disorder. At the final stage of the refinement, the occupancy factors of two possible sites were fixed at 0.737 (2) and 0.263 (2), respectively. H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.95 (aromatic), 0.99 (methylene), 1.00 (methylidyne) and 0.98 Å(methyl), and with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(C_{methyl})$.

Figures

Fig. 1. The molecular structure of (I) showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. Only the major component of the disorder is shown.

3-(3-Chloro-4-methylphenyl)-2-(4-fluorophenyl)thiazolidin-4-one

C₁₆H₁₃ClFNOS

 $M_r = 321.78$

 $D_{\rm x} = 1.474 \text{ Mg m}^{-3}$ Mo K α radiation $\lambda = 0.71070 \text{ Å}$

Orthorhombic, Pbca a = 12.265 (3) Å *b* = 12.994 (3) Å c = 18.192 (4) Å $V = 2899.3 (10) \text{ Å}^3$ Z = 8 $F_{000} = 1328$

Data

Data collection	
Rigaku Saturn diffractometer	2796 reflections with $I > 2\sigma(I)$
Radiation source: Rotating anode	$R_{\rm int} = 0.056$
Monochromator: confocal	$\theta_{\text{max}} = 27.9^{\circ}$
T = 113(2) K	$\theta_{\min} = 2.5^{\circ}$
ω scans	$h = -16 \rightarrow 15$
Absorption correction: multi-scan (Jacobson, 1998)	$k = -17 \rightarrow 17$
$T_{\min} = 0.937, T_{\max} = 0.960$	<i>l</i> = −23→23
34208 measured reflections	Standard reflections: ?
3445 independent reflections	

Cell parameters from 6992 reflections

 $\theta = 2.0-27.9^{\circ}$

 $\mu = 0.42 \text{ mm}^{-1}$

T = 113 (2) K

Block, colourless

 $0.16 \times 0.14 \times 0.10 \text{ mm}$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.048$	H-atom parameters constrained
$wR(F^2) = 0.125$	$w = 1/[\sigma^2(F_o^2) + (0.0666P)^2 + 0.3972P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.12	$(\Delta/\sigma)_{\text{max}} = 0.001$
3445 reflections	$\Delta \rho_{max} = 0.38 \text{ e } \text{\AA}^{-3}$
240 parameters	$\Delta \rho_{\rm min} = -0.76 \text{ e } \text{\AA}^{-3}$
8 restraints	Extinction correction: SHELXL, Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
Primary atom site location: structure-invariant direct	Extinction coefficient: 0.0157 (15)

methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

ггасионай аютис	coordinales and isoli	opic or equivalent is	souropic displacement	ii purumeters (A)	
	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
S1	0.30373 (5)	0.52351 (4)	0.39652 (3)	0.0435 (2)	
F1	0.49210 (13)	0.10913 (11)	0.54723 (7)	0.0612 (4)	
01	0.09023 (11)	0.42265 (11)	0.25825 (7)	0.0344 (3)	
N1	0.25973 (12)	0.37796 (11)	0.29988 (7)	0.0258 (3)	
C1	0.16844 (15)	0.43791 (14)	0.29819 (9)	0.0265 (4)	
C2	0.17362 (16)	0.52700 (14)	0.35115 (10)	0.0299 (4)	
H2A	0.1142	0.5215	0.3878	0.036*	
H2B	0.1650	0.5928	0.3243	0.036*	
C3	0.35104 (15)	0.40902 (14)	0.34646 (9)	0.0262 (4)	
H3A	0.4140	0.4287	0.3145	0.031*	
C4	0.38717 (14)	0.32583 (13)	0.39887 (8)	0.0226 (4)	
C5	0.31314 (15)	0.27742 (14)	0.44550 (9)	0.0270 (4)	
H5A	0.2380	0.2950	0.4430	0.032*	
C6	0.34782 (18)	0.20378 (14)	0.49557 (10)	0.0342 (4)	
H6A	0.2977	0.1707	0.5276	0.041*	
C7	0.45733 (18)	0.18018 (15)	0.49737 (10)	0.0374 (5)	
C8	0.53130 (18)	0.22326 (18)	0.45151 (10)	0.0408 (5)	
H8A	0.6058	0.2034	0.4535	0.049*	
С9	0.49613 (16)	0.29727 (17)	0.40134 (10)	0.0332 (4)	
H9A	0.5469	0.3283	0.3687	0.040*	
Cl1	0.10556 (6)	0.05302 (5)	0.18509 (4)	0.0425 (3)	0.7369 (16)
C10	0.2796 (3)	0.2928 (2)	0.2516 (2)	0.0241 (9)	0.7369 (16)
C11	0.3781 (2)	0.2805 (2)	0.21479 (19)	0.0251 (7)	0.7369 (16)
H11A	0.4354	0.3287	0.2220	0.030*	0.7369 (16)
C12	0.39283 (18)	0.19757 (18)	0.16753 (13)	0.0284 (7)	0.7369 (16)
H12A	0.4601	0.1891	0.1424	0.034*	0.7369 (16)
C13	0.3091 (2)	0.12703 (14)	0.15704 (10)	0.0273 (7)	0.7369 (16)
C14	0.2106 (2)	0.13939 (18)	0.19381 (13)	0.0285 (7)	0.7369 (16)
C15	0.1959 (2)	0.2223 (2)	0.24107 (18)	0.0259 (7)	0.7369 (16)
H15A	0.1286	0.2307	0.2662	0.031*	0.7369 (16)
C16	0.3251 (3)	0.0370 (2)	0.10336 (15)	0.0426 (8)	0.7369 (16)
H16A	0.3988	0.0398	0.0827	0.064*	0.7369 (16)
H16B	0.2715	0.0420	0.0636	0.064*	0.7369 (16)
H16C	0.3152	-0.0282	0.1296	0.064*	0.7369 (16)
Cl1'	0.46197 (17)	0.13594 (14)	0.12449 (10)	0.0381 (6)	0.2631 (16)
C10'	0.2546 (8)	0.2828 (6)	0.2566 (6)	0.023 (2)	0.2631 (16)
C11'	0.1642 (6)	0.2184 (6)	0.2549 (5)	0.0210 (18)	0.2631 (16)
H11B	0.1016	0.2344	0.2834	0.025*	0.2631 (16)
C12'	0.1654 (5)	0.1304 (5)	0.2114 (4)	0.032 (2)	0.2631 (16)
H12B	0.1036	0.0864	0.2102	0.039*	0.2631 (16)
C13'	0.2570 (6)	0.1070 (4)	0.1696 (3)	0.0234 (17)	0.2631 (16)
C14'	0.3474 (5)	0.1714 (5)	0.1714 (3)	0.0197 (16)	0.2631 (16)

C15'	0.3462 (6)	0.2594 (6)	0.2149 (5)	0.025 (2)	0.2631 (16)	
H15B	0.4080	0.3034	0.2161		0.030*	0.2631 (16)	
C16'	0.2502 (9)	0.0116 (6)	0.1187 (4)	0.0398 (19)	0.2631 (16)	
H16D	0.1796	-0.0224	0.1256		0.060*	0.2631 (16)	
H16E	0.3090	-0.0364	0.1310		0.060*	0.2631 (16)	
H16F	0.2576	0.0334	0.0674		0.060*	0.2631 (16)	
Atomic displacen	nent parameters ((A^2)					
	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}	
S1	0.0665 (4)	0.0283 (3)	0.0359 (3)	0.0119 (2)	-0.0239(2)	-0.0098(2)	
F1	0.1027 (12)	0.0462 (8)	0.0347 (7)	0.0305 (8)	-0.0128 (7)	0.0098 (6)	
01	0.0335 (8)	0.0393 (8)	0.0304 (7)	0.0034 (6)	-0.0069 (6)	-0.0027 (6)	
N1	0.0324 (8)	0.0268 (8)	0.0182 (7)	0.0040 (6)	-0.0049 (6)	-0.0040 (6)	
C1	0.0331 (10)	0.0275 (9)	0.0189 (8)	0.0015 (7)	0.0007 (7)	0.0017 (7)	
C2	0.0391 (11)	0.0276 (9)	0.0231 (9)	0.0023 (8)	0.0050 (8)	-0.0024(7)	
C3	0.0309 (10)	0.0275 (9)	0.0203 (8)	-0.0023(0)	-0.0025(7)	-0.002(7)	
C4	0.0276 (9)	0.0239 (9)	0.0162 (8)	-0.0001(7)	-0.0025(6)	-0.0031(6)	
C5	0.0270(9)	0.0287(9)	0.0102(0)	-0.0012(7)	0.0002(7)	-0.0021(0)	
C6	0.0544(13)	0.0267(5)	0.0211(0)	-0.0012(7)	0.0002(7)	0.0020(7)	
C7	0.0608 (13)	0.0200(10)	0.0213(9)	0.00+7(7)	-0.0100(9)	-0.0014(7)	
C8	0.0000(15)	0.0509(10)	0.0200(0)	0.0132(9) 0.0179(10)	-0.0080(9)	-0.0035(9)	
C9	0.0303(11)	0.0350(13)	0.0232(10)	0.0177(10) 0.0022(8)	-0.0018(7)	-0.0033(9)	
Cl1	0.0502(10)	0.0452(12)	0.0241(9)	-0.022(0)	-0.0178(3)	0.0011(0)	
CII CI0	0.0333(3)	0.0304(4)	0.0437(4)	-0.0209(3)	-0.0178(3)	0.0000(3)	
C10	0.032(2)	0.0253(10)	0.0173(10)	-0.0010 (13	-0.0003(14)	-0.0009 (13)	
CII	0.0204(18)	0.0231(13)	0.0238(14)	-0.0027 (13	-0.0027(13)	-0.0022 (11)	
C12	0.0331(18)	0.0302(16)	0.0220(13)	-0.0030(13)	$0.0025(13) \\ 0.0014(14)$	-0.0013(11)	
C13	0.044(2)	0.0207 (16)	0.0173 (13)	-0.0017 (14	-0.0014(14)	0.0039 (11)	
C14	0.036 (2)	0.0262 (15)	0.0233 (16)	-0.0052 (15	-0.0077(14)	0.0044 (12)	
CI5	0.024 (2)	0.0317 (15)	0.0223 (16)	-0.0002 (13	-0.0019(13)	0.0028 (11)	
C16	0.073 (2)	0.0288 (15)	0.0263 (14)	0.0019 (15)	-0.0060 (14)	-0.0073 (11)	
CII	0.0519 (12)	0.0304 (10)	0.0321 (10)	0.0123 (8)	0.0154 (8)	0.0041 (7)	
C10'	0.014 (4)	0.037 (6)	0.018 (4)	0.015 (4)	-0.003 (3)	-0.004 (4)	
C11'	0.020 (4)	0.026 (4)	0.018 (4)	0.006 (3)	0.000 (3)	-0.011 (3)	
C12'	0.037 (6)	0.034 (5)	0.026 (4)	0.008 (4)	0.000 (4)	-0.008(3)	
C13'	0.027 (5)	0.021 (4)	0.023 (4)	-0.005 (4)	-0.004(4)	0.009 (3)	
C14'	0.023 (5)	0.016 (4)	0.020 (3)	0.000 (3)	0.008 (3)	0.001 (3)	
C15'	0.020 (5)	0.036 (5)	0.018 (4)	-0.004 (4)	0.001 (3)	0.009 (3)	
C16'	0.060 (6)	0.032 (4)	0.027 (4)	0.005 (4)	-0.014 (4)	-0.009 (3)	
Geometric paran	neters (Å, °)						
S1—C2		1.797 (2)	C11—C12		1.3900		
S1—C3		1.8382 (19)	С11—Н	11A	0.9	0.9500	
F1—C7		1.363 (2)	C12—C	13	1.3	900	
O1—C1		1.220 (2)	С12—Н	12A	0.9	500	
N1—C1		1.364 (2)	С13—С	14	1.3	900	

C13—C16

C14-C15

1.537 (3) 1.3900

1.434 (2)

1.461 (2)

N1-C10

N1-C3

N1—C10'	1.467 (4)	C15—H15A	0.9500
C1—C2	1.507 (2)	C16—H16A	0.9800
C2—H2A	0.9900	C16—H16B	0.9800
C2—H2B	0.9900	C16—H16C	0.9800
C3—C4	1.508 (2)	Cl1'—C14'	1.707 (5)
С3—НЗА	1.0000	C10'—C11'	1.3900
C4—C9	1.388 (3)	C10'—C15'	1.3900
C4—C5	1.393 (2)	C11'—C12'	1.3900
C5—C6	1.388 (3)	C11'—H11B	0.9500
С5—Н5А	0.9500	C12'—C13'	1.3900
C6—C7	1.378 (3)	C12'—H12B	0.9500
С6—Н6А	0.9500	C13'—C14'	1.3900
С7—С8	1.354 (3)	C13'—C16'	1.549 (7)
C8—C9	1.394 (3)	C14'—C15'	1.3900
C8—H8A	0.9500	C15'—H15B	0.9500
С9—Н9А	0.9500	C16'—H16D	0.9800
Cl1—C14	1.716 (2)	С16'—Н16Е	0.9800
C10-C11	1.3900	C16'—H16F	0.9800
C10—C15	1.3900		
C2—S1—C3	94.20 (8)	C12—C11—H11A	120.0
C1—N1—C10	124.5 (2)	C10-C11-H11A	120.0
C1—N1—C3	118.97 (14)	C11—C12—C13	120.0
C10—N1—C3	116.0 (2)	C11—C12—H12A	120.0
C1—N1—C10'	115.7 (5)	C13—C12—H12A	120.0
C10—N1—C10'	13.6 (4)	C12—C13—C14	120.0
C3—N1—C10'	125.2 (5)	C12—C13—C16	119.7 (2)
O1—C1—N1	124.48 (16)	C14—C13—C16	120.3 (2)
O1—C1—C2	122.60 (16)	C15—C14—C13	120.0
N1—C1—C2	112.92 (15)	C15—C14—Cl1	117.82 (16)
C1—C2—S1	108.15 (13)	C13—C14—Cl1	122.16 (16)
C1—C2—H2A	110.1	C14—C15—C10	120.0
S1—C2—H2A	110.1	C14—C15—H15A	120.0
C1—C2—H2B	110.1	C10-C15-H15A	120.0
S1—C2—H2B	110.1	C13—C16—H16A	109.5
H2A—C2—H2B	108.4	C13—C16—H16B	109.5
N1—C3—C4	113.20 (14)	H16A—C16—H16B	109.5
N1—C3—S1	105.60 (12)	C13—C16—H16C	109.5
C4—C3—S1	111.08 (11)	H16A—C16—H16C	109.5
N1—C3—H3A	108.9	H16B—C16—H16C	109.5
С4—С3—НЗА	108.9	C11'—C10'—C15'	120.0
S1—C3—H3A	108.9	C11'—C10'—N1	123.7 (5)
C9—C4—C5	119.17 (16)	C15'—C10'—N1	116.3 (5)
C9—C4—C3	119.69 (16)	C10'—C11'—C12'	120.0
C5—C4—C3	121.14 (16)	C10'—C11'—H11B	120.0
C6—C5—C4	120.75 (18)	C12'—C11'—H11B	120.0
С6—С5—Н5А	119.6	C11'C12'C13'	120.0
C4—C5—H5A	119.6	C11'—C12'—H12B	120.0
C7—C6—C5	117.89 (18)	C13'—C12'—H12B	120.0
С7—С6—Н6А	121.1	C12'—C13'—C14'	120.0

С5—С6—Н6А	121.1	C12'—C13'—C16'	117.3 (6)
C8—C7—F1	118.72 (19)	C14'—C13'—C16'	122.6 (6)
C8—C7—C6	123.13 (18)	C13'—C14'—C15'	120.0
F1—C7—C6	118.14 (19)	C13'—C14'—C11'	118.8 (4)
C7—C8—C9	118.77 (19)	C15'—C14'—C11'	121.0 (4)
С7—С8—Н8А	120.6	C14'—C15'—C10'	120.0
С9—С8—Н8А	120.6	C14'—C15'—H15B	120.0
C4—C9—C8	120.24 (19)	C10'—C15'—H15B	120.0
С4—С9—Н9А	119.9	C13'—C16'—H16D	109.5
С8—С9—Н9А	119.9	С13'—С16'—Н16Е	109.5
C11—C10—C15	120.0	H16D—C16'—H16E	109.5
C11—C10—N1	122.16(19)	C13'—C16'—H16F	109.5
C15—C10—N1	117.83 (19)	H16D—C16'—H16F	109.5
C12-C11-C10	120.0	H16E—C16'—H16F	109.5
C_{10} N1 C_{1} O_{1}	1 1 (3)	C3 N1 C10 C15	141 68 (18)
$C_{10} = N_{1} = C_{1} = O_{1}$	4.4 (3)	$C_{10} = N_1 = C_{10} = C_{15}$	141.00(10)
$C_{10} = N_1 = C_1 = O_1$	-7.7(5)	$C_{10} = N_1 = C_{10} = C_{13}$	0(3)
C10 - N1 - C1 - C2	-7.7(3)	C13 - C10 - C11 - C12	178.0 (4)
C10 - N1 - C1 - C2	-1/3.3(2)	NI = CI0 = CI1 = CI2	-178.9 (4)
$C_3 = N_1 = C_1 = C_2$	-4.1(2)	C10 - C11 - C12 - C13	0.0
C10 $N1$ $C1$ $C2$	1/2.6 (5)	C11 - C12 - C13 - C14	0.0
OI = CI = C2 = SI	-1/8.03(15)	C11 - C12 - C13 - C16	1/8.6 (2)
NI = CI = C2 = SI	1.69 (19)	C12 - C13 - C14 - C15	0.0
$C_3 = S_1 = C_2 = C_1$	0.6/(13)	C16 - C13 - C14 - C15	-1/8.6(2)
CI = NI = C3 = C4	126.12(17)		-1/8.2(2)
C10-N1-C3-C4	-62.0(3)	C16-C13-C14-C11	3.2 (3)
$C10^{}N1^{}C3^{}C4$	-50.3(5)	C13 - C14 - C15 - C10	0.0
CI = NI = C3 = SI	4.38 (19)		1/8.24 (19)
C10-N1-C3-S1	1/6.3 (2)		0.0
C10— $N1$ — $C3$ — $S1$	-1/2.0(5)	NI-CI0-CI5-CI4	1/8.9 (4)
C2 = S1 = C3 = N1	-2.61 (13)	$CI = NI = CI0^{\circ} = CI1^{\circ}$	-42.6 (8)
$C_2 = S_1 = C_3 = C_4$	-125.71 (13)	$C10$ — $N1$ — $C10^{\circ}$ — $C11^{\circ}$	-176(4)
NI-C3-C4-C9	127.67 (17)	$C3 = N1 = C10^{\circ} = C11^{\circ}$	133.9 (4)
SI_C3_C4_C9	-113.73 (16)	$CI = NI = CI0^{\circ} = C15^{\circ}$	136.3 (4)
NI-C3-C4-C5	-52.9 (2)	C10—N1—C10'—C15'	3(3)
S1—C3—C4—C5	65.75 (18)	C3—N1—C10'—C15'	-47.2 (8)
C9—C4—C5—C6	2.0 (3)	C15'—C10'—C11'—C12'	0.0
C3—C4—C5—C6	-177.47 (16)	N1—C10'—C11'—C12'	178.9 (10)
C4—C5—C6—C7	-0.2 (3)	C10'—C11'—C12'—C13'	0.0
C5—C6—C7—C8	-1.8 (3)	C11'—C12'—C13'—C14'	0.0
C5—C6—C7—F1	178.96 (16)	C11'—C12'—C13'—C16'	-176.3 (7)
F1—C7—C8—C9	-178.89 (17)	C12'—C13'—C14'—C15'	0.0
C6—C7—C8—C9	1.9 (3)	C16'—C13'—C14'—C15'	176.1 (7)
C5—C4—C9—C8	-1.9 (3)	C12'—C13'—C14'—C11'	175.6 (5)
C3—C4—C9—C8	177.55 (17)	C16'—C13'—C14'—C11'	-8.4 (7)
C7—C8—C9—C4	0.0 (3)	C13'-C14'-C15'-C10'	0.0
C1—N1—C10—C11	132.0 (2)	C11'—C14'—C15'—C10'	-175.5 (5)
C3—N1—C10—C11	-39.4 (3)	C11'-C10'-C15'-C14'	0.0
C10'—N1—C10—C11	-175 (3)	N1—C10'—C15'—C14'	-179.0 (10)
C1—N1—C10—C15	-46.9 (3)		

